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Abstract- We describe how the application of simula- 
tion  and  emulation to  the lifecycle of spacecraft software 
can improve quality and aid in schedule compression and 
cost reduction. We define various forms of simulation 
and  emulation, describe their various uses  over the soft- 
ware development lifecycle, outline our experiences with 
regards to what  can go  wrong and  right,  and discuss how 
one might insert the technology into  a project lifecycle. 
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1 INTRODUCTION 

The development of spacecraft emulators[l]  at  JPL has 
been motivated by several needs that regularly arise dur- 
ing the development of spacecraft flight software. 

Insufficient  hardware  breadboards During most 
project lifecycles there is a  greater demand for 
breadboards than can be satisfied. Breadboard 
spacecraft are expensive, so this is perhaps in- 
evitable. Simulators  are often used  in place of 
breadboards, to reduce the pressure on the project 
to supply  breadboards. 

Repeatability Simulators can be operated in a mode 
that supports fully synchronous and deterministic 
operation, so that two runs, given the same initial 
state  and  input timing, will  yield exactly the same 
state  trajectory  and final state. This is extremely 

*The work described was performed at the  Jet Propulsion Lab- 
oratory, California Institute of Technology under  contract  with 
the National  Aeronautics and Space Administration. U.S. Gov- 
ernment work not protected by U.S. Copyright. 

useful  for  “gold standard”  testing, because no fuzzy 
compare is required: The final state is either ex- 
actly  right, or its wrong. In  contrast to  this, hard- 
ware breadboards  tend to not  be fully repeatable, 
so a fuzzy compare is required. This generally ei- 
ther means time-consuming work, or the possibility 
of missed failures. 

Performance Simulators often run faster than real- 
time, which  is  very  useful  when there is a large 
amount of testing or development to be done. Inter- 
estingly, this  trend  has continued even as spacecraft 
development schedules have compressed. Shorter 
design-to-launch cycles  removes some of the advan- 
tage Moores  Law confers upon the simulators,  but 
technologies have been developed [2] that improved 
simulator efficiency enough to  stay ahead of the 
flight hardware. 

Visibility Spacecraft simulators have  much better vis- 
ibility than breadboards or flight hardware,  and so 
they  are generally a more productive debugging en- 
vironment. Even esoteric cross-bus race conditions 
are easily detected on a  simulator, where they would 
be difficult to identify on a  hardware  breadboard. 

In  this paper we describe a number of applications of 
software emulation (of spacecraft hardware) and sim- 
ulation (of the universe visible to  the spacecraft) over 
the lifecycle of a spacecraft: Codesign[3] to aid in 
making hardware/software trade decisions; Development 
of flight software on spacecraft software emulators to 
improve productivity  and reduce development station 
costs; System test by executing the flight software on 
the software spacecraft emulator with a simulated uni- 
verse around  it;  Operations verification by operating the 
simulated spacecraft using the primary  operations tools 
and process; and end-to-end testing by inserting the sim- 
ulated spacecraft far downstream in the operations tool 
chain so as  to exercise virtually all of the operations tool 
chain. 
Daniel Goldin, the NASA Administrator, recently 
stated[4]  that simulation will  become  ever more impor- 
tant  to achieving the NASA  goals of reduced costs and 
greatly improved  mission capability. One aspect of this 
vision has been demonstrated: It is practical to con- 
struct spacecraft simulations that can  be  operated  just 
as real spacecraft as  operated, so it is reasonable to exer- 
cise  mission scenarios, or even complete missions, before 
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* hardware is built and launched. In  this way  highly  de- 
tailed design trades can be inexpensively performed. 
Figure 1 outlines a typical spacecraft emulator and  its 
simulated environment. It has several major compo- 
nents: 

Link Simulator When doing end-to-end simulations, a 
link simulator is  used to provide propagation delays 
and signal degradation. In other  situations it is  sim- 
ply a conduit of uplink and downlink data. 

Spacecraft This element simulates the spacecraft 
avionics. 

Integrator Most spacecraft dynamics is simulated by 
integrating forces  over time to compute current ac- 
celeration, velocity, and position. The forces may 
be a result of actuator  activity (i.e. the firing of a 
thruster), or it may be celestial in origin. 

Ephemeris The ephemeris is a  database  that gives the 
location of celestial objects at a given time. It is 
used to determine the location of celestial objects 
in order to generate scenes  for sensors (i.e. star- 
fields), and  to compute  gravitational forces on the 
spacecraft. 

Scene  Generator Scene generators  are used to gener- 
ate views of the universe for input to sensors. For 
our purposes, a scene is not  restricted  to  a scene  like 
an image of a planet:  it may be  a scene of any field 
or  particle. 

Sensor  Transfer  Function This function takes a 
scene that is represented in a canonical first- 
principal form, and converts it  to what will be 
sensed by the sensor. For example, the scene  gen- 
erator  generates  a “perfect” star field image (point 
sources with the proper  intensity  and  perhaps spec- 
tra), which  is then  blurred, smeared, and filtered to 
generate the image that will be seen by the starfield 
camera. 

2 WHAT IS SIMULATION? 

For the purposes of this  paper,  a simulator is a software 
program that  acts like certain  portions of the spacecraft 
hardware  and the physics that acts upon the spacecraft 
during the mission. Such a simulator is  used to develop 
and  test spacecraft software components and systems 
without requiring access to real  hardware or real physics. 
In  the limiting case one end up with a simulator that 
obeys the prime  directive, although many useful prod- 
ucts  can  be  built that do not have this  property: 

All possible softwares shall behave identically 
upon  the  simulator and the real hardware - 

With extreme  performance’. 

lThere  are a couple of inherent  limitations: There isn’t real 
science data,  and characteristics of the hardware that aren’t known 
a pr ior i  aren’t  simulated. 

Figure 1: Overview of system 

This prime directive came about in the early days of 
our spacecraft emulator, when it was  used primarily as 
a software development platform. It is obvious that in 
that case, we needed to provide high fidelity in the sense 
offered  by the prime directive. However, even today, 
where spacecraft simulators  are routinely used as build- 
ing blocks in larger systems and processes unrelated to 
the development of flight software, we still need exactly 
the same type of fidelity. This is because as a practical 
matter, if the flight software behaves the same, the space- 
craft  as observed from the outside behaves the same, 
which  is exactly what you  want  for system-level uses of 
emulation. 

3 TYPES OF SIMULATION 

Bit-level 
A “bit-level”2 simulator models hardware behavior with 
bit-level fidelity at  the hardwarelsoftware interface 3,  
but uses unconstrained techniques to simulate the hard- 
ware behind the interface. Specifically, there is probably 
no gate-level modeling behind the interface, because that 
would be superfluous to  the prime directive and would 
greatly reduce the performance of the simulator. 
Certain spacecraft behavior that can  be sensed  by the 
software are  dictated by  physics and/or  the environment 
of the spacecraft, and so, by the prime directive, these 
things are also simulated. 
Instrument sensor  values are  not  accurately  simulated, 
~~~ 

2History drives this terminology: These are behavorial models 
of the spacecraft  hardware. 

3The interfaces of modeled hardware  must act as much like the 
real hardware as is possible. There is always a temptation  to sim- 
plify the interfaces for the sake of easing the development of the 
simulator or of the flight software. This inevitably  leads to a diffi- 
culties when the software is finally integrated  with the real  hard- 
ware. Because of this, we STRONGLY advise that no shortcuts 
are taken in the  area of interface fidelity, unless a management 
plan is in place that provides a  timely and controlled migration 
from  lower fidelity to higher fidelity. 



‘ because that is generally impossible. We have  found 
it reasonable to synthesize plausible values, correlated 
across sensors and closed with actuators, where  neces- 
sary. 

The extreme fidelity of this simulator uniquely positions 
it  as  a cost-effective substitute for an engineering model 
or breadboard. In particular, whenever the focus is on 
the software, or its  interactions with the documented 
behavior of the hardware4, you should consider the use 
of simulation. This is because you are using the EM or 
breadboard as a physical embodiment of the hardware 
specification as  a  substrate for execution of the software: 
you do not really need the literal hardware. 

Native  Compilation 
There  are choices besides “bit-level” simulation de- 
scribed above. A defining attribute of a bit-level simula- 
tion is the use of an Instruction-Level Simulator (ILS) of 
the spacecraft CPUs  that execute exactly the same bina- 
ries as does the real  CPU.  This provides the ultimate in 
fidelity, but it comes at a cost: it takes time  to develop 
the ILS, and performance potential is limited. 

Under some circumstances you can make slight modifi- 
cations to  the flight software source5 and  then directly 
compile the flight software for execution on the host pro- 
cessor. The compiled  flight software is  linked directly 
into the simulator (using all models other than  the ILS 
as-is), for subsequent execution. Performance is thus 
greatly improved, but fidelity is lost and you are no 
longer obeying the “fly what you test,  test what you 
fly” rule. 

Virtual-machine  interpreter 
Spacecraft developed at  JPL have often had  a virtual- 
machine architecture: an instruction  set  suitable for 
commanding a spacecraft is developed, and  the space- 
craft is commanded in that notation via an interpreter 
onboard the spacecraft. If the instruction  set were to 
be  adequately defined, and  little commanding or opera- 
tions were performed via “back doors”,  then it may be 
feasible to simulate the spacecraft at  the virtual machine 
level. Such a  simulator would  have extremely good per- 
formance. There  has been no spacecraft instruction  set 
developed to  date  at  JPL  that would  be suitable for this 
level of simulation (at least not without a lot of caveats), 
but  perhaps the time is right to develop such an archi- 
tecture  as  the foundation of future spacecraft flight soft- 
ware. That architecture  has performed well  for many 
missions. 

Future spacecraft are going to be goal-oriented, where 
a goal is a  predicate applied to  state  that must be true 

~ ~~ 

4Contrast  this  with  the case where your focus is on the behavior 
of the hardware artifact itself, for example when searching for a 
gate  latchup or timing glitch. 

5Most importantly,  the simulator needs to know  when the  FSW 

drivers  must use a  function call for all device i/o,  rather  than 
has  read or  written reactive memory, which means that e.g. device 

directly manipulating memory locations. We also need hooks for 
timing control, and of course certain  FSW functions like dynamic 
code uplinking won’t work properly. 

over  some period of time. Flight code6 determines how 
to cause that goal to be achieved. It is not immediately 
obvious how this might be simulated without simulat- 
ing the execution of all of the code that has  anything  to 
do with converting a goal into imperatives. If, however, 
this advanced architecture were to be implemented on 
top of a  virtual machine that  acts  as  the interface be- 
tween goals and imperatives, it may be practical to sim- 
ulate the actions of the spacecraft at  the virtual-machine 
level,  which should let us execute far faster than realtime. 
Unfortunately this will probably impose restrictions on 
how goals are achieved. It is not yet clear if this will  be 
a fatal issue. 

Scaffolding 
Advanced software development often involves prototyp 
ing efforts, and flight software is no exception. There 
has in fact been a  trend towards increased prototyping 
at  JPL. 
The  prototyping efforts are usually focussed on small 
portions of the flight software, and generally need only 
an  abstract simulation of those parts of the system that 
are needed  for  scaffolding purposes. Indeed, a detailed 
simulator would be a handicap in this application. Effort 
would be expended developing interfaces to  the detailed 
hardware models that could otherwise be spent doing 
the prototyping itself. 
Prototyping efforts are usually short-term efforts where 
agility of exploration is important.  This means that 
simulators for this purpose must be especially easy to 
rapidly reconfigure or extend, so that  the scaffolding  does 
not get in the way  of the prototyping work. At the same 
time, the scaffolding should reflect enough of the flight 
system that  the prototype does not ignore inconvenient 
details that will later have significant impact. 
The  greatest challenge of this  type of simulation is to 
find the right level of abstraction. If it’s  too abstract, 
the transition  to reality will invalidate the results of the 
prototyping. If it’s not abstract enough, time is wasted 
building detailed device drivers and doing other inter- 
facing  work not germane to  the primary objective of the 
prototyping effort. 

Dynamics 
It is sometimes the case, especially during early software 
design phases, that one only needs a detailed simulation 
of the spacecraft dynamics: the particular avionics  is not 
relevant. Work at this level  is routinely performed during 
development of the  attitude control software, where the 
focus  is more on control laws than on hardware interface 
details. 

JPL has developed a sophisticated dynamics modeling 
capability called DARTS[5], which can  be used stan- 
dalone as mentioned above, or can  be used as  part of a 
larger system. Most of the simulation systems mentioned 
in this paper use  DARTS  for dynamics simulation. 

‘jPerhaps very sophisticated  code, involving the use of planning 
and scheduling algorithms, model-based reasoning, and  other ad- 
vanced algorithms. 



4 JAVA 

If the flight software is written in Java,  A number of 
good things occur, at least from the simulation view- 
point. First, one needn’t construct  a processor  model 
for the simulator, because the Java bytecode interpreter 
performs that function. Second, in the early phases of 
the project one could simulate device i/o  at outer driver 
level (Java class specification), rather  than at hardware 
command-status register detail. If the interfaces are well 
specified, it is reasonable to expect that  the migration 
to flight hardware would  go  much more smoothly than 
has previously been experienced. 
We are assuming that there is  no operating system under 
the Java  interpreter. If there is then things get more  dif- 
ficult because it may not be possible to implement the 
VM without modeling a significant portion of the un- 
derlying operating system. We are also assuming that 
at least in the early stages of the project, bytecode ex- 
ecution is  used rather  than  just-in-time compilation or 
direct compilation, either of which  would necessitate the 
development of a model of the avionics processor, so that 
the resulting code could be properly executed. 

5 APPLICATIONS OF SIMULATION 

Coverification 
Coverification[G]  is the act of verifying the behavior of a 
system composed of hardware  and software before  you 
have real  hardware, by executing the software against 
models (e.g. Verilog or VHDL) of the hardware. 

Coverification is generally performed by running small 
fragments of the software against a gate-level simulation 
of the hardware. Performance factors often limit the 
scope of the coverification to a limited amount of code: 
almost certainly  nothing near the whole system. 
The spacecraft simulator  can  be used  in a hybrid con- 
figuration to do high-performance co~erification~. By 
performing most of the execution on the simulator mod- 
els, and  as  little  as possible on the vendor  coverification 
platform, performance is only limited by the amount of 
hardware being coverified in a  particular execution: All 
other  hardware  operates at simulator speeds. 

Hardware/software  codesign 
Related to coverification is codesign[3]: The design space 
of the system is explored before committing to silicon. 
This is done by constructing a simulator containing be- 
havorial models of the hardware design, and running 
prototype software on  the simulator.  Opportunities for 
improving the distribution of functionality are identified 
between hardware and software before committing to sil- 
icon. 
The spacecraft simulator obviously supports codesign 
because it  can  be used to model hardware that doesn’t 
yet exist. It can also directly interpret  statecharts[7] 

7This  has not been demonstrated. 

as models of hardware components. Statecharts  are 
well understood by many designers, and  are easily and 
quickly  modified as  the design evolves, so the design it- 
eration cycle  is radically shortened: It may be  practical 
to do several hardware/software design trades in a single 
day. 
This concept isn’t new to  the spacecraft avionics design 
process: The Voyager  COMSIM simulator was  used  al- 
most thirty years ago to perform codesign. However, it 
is  now much  easier and  faster. 

Software  development 
Simulation-centric software development is the  act of de- 
veloping embedded software using a software simulation 
of the  target for day to day development activities, rather 
than a physical instance of the  target.  There  are many 
reasons why this is good (described in some detail  later 
in this paper),  but basically it’s because of improved 
control over and visibility into  operation of the software. 
It’s also a cheaper and  faster way to develop software. 
By employing the improved control and visibility, one 
can increase productivity in many ways; automated  test- 
ing, detailed performance measurements, improved de- 
bugging, and fancy breakpoints, for example. And since 
it’s all software, the whole simulation can be check- 
pointed, so work can be suspended, then  later resumed 
from exactly the checkpointed state ’. 
Commercial tools (like debuggers and performance mea- 
surement tools) can usually be used in a simulation envi- 
ronment: They typically come with a customizable “con- 
nect this the breadboard somehow” component, and per- 
haps a  bit of software to install on the  target hardware. 
It is not difficult to use the  adaptation  methods  to  attach 
the product to the  simulator,  rather than real hardware. 
By the prime directive, the tool will workg. 
It is still a good idea to regularly exercise the develop- 
ment team on the  target  hardware, so as  to minimize 
backend and  integration surprises. Management deci- 
sions must be made with respect to development perfor- 
mance us risk reduction. 

Why it ’s good 

A simulation-centric development environment is a de- 
velopers dream. It directly provides the many advan- 
tages inherent of software over hardware, reducing costs, 
risk, and schedule. 

Control The simulator can  be single-stepped a p s  at a 
time; provides breakpoints triggered by expressions 
of arbitrary complexity; can checkpoint evergthing; 
and can be dramatically reconfigured in a matter of 

*We often do this in the Cassini High Speed Simulator(HSS): 
The simulator is initialized and  run  to some  interesting state,  then 
checkpointed. Multiple  experiments are  then executed, starting 
from that checkpoint. This  can save many  hours of debugging and 
testing. 

gThis isn’t nearly the  stretch  it might at first seem. Such tools 
are designed specifically to  adapt  to a wide range of development 
environments. 
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moments. No more tedious days with a logic an- 
alyzer trying to find an  interrupt problem or race 
condition. 

Visibility The full state of the  system, at any instant, 
is easily examined, checkpointed, logged, or modi- 
fied. Formal analysis for deadlock potential or race 
conditions is  feasible. Cache patterns can be ana- 
lyzed in detail. Abuse of the hardware (e.g. use 
of uninitialized variable, or failure to save all state 
during an  interrupt, or setting  both of the “never 
set  this  bit and  that bit at  the same time” bits) can 
be  detected online and in situ. 

Replication The marginal cost of additional simulators 
is essentially zero, so every developer can own a full 
development system. No more graveyard and week- 
end shifts on  the testbed  as schedule crunch builds. 

Extensibility The behavior of the simulator is easily 
extended, especially with the use of modern script- 
ing subsystemslO that give the sophisticated power 
user  access to  the full feature  set of the tool. 

Early  availability A simulator generally has  a  shorter 
development cycle than a  hardware  testbed of com- 
parable fidelity, and so can be available earlier in 
the project life-cycle.  Developers can begin work 
on a full-fidelity platform,  rather than cobbling to- 
gether ad-hoc scaffolding for their individual areas 
of concern. Hardware/software design trades can be 
explored before hardware is taped  out. 

Automated control Hands-off and  repeatable  testing 
is encouraged because it’s easy and  natural  to con- 
trol  the execution of the simulator via other soft- 
ware. Nightly integration  testing is reasonable. 
Testing staff and schedule is greatly reduced. 

Modularity A simulator can be constructed in a highly 
modular fashion, so that more urgently needed  mod- 
els are built first and available to  the users before 
the entire simulator has been built and validated. 

No Hardware No fried boards. No emergency  Fed-X 
for replacement parts. No days of debugging looking 
for a weak component or intermittent connection. 
Developers stay focused on the  job of developing. 

Adoption  impediments 

Most spacecraft and  instrument flight software develop- 
ment still  takes place in hardware-centric development 
environments. We have observed a number of reasons 
over the years, which can be generalized to  the usual 
problems of bringing an unfamiliar technology into  a pro- 
cess. 

Abstraction can be a tough sell. The essence of 
simulation is abstraction: Hardware and environ- 
mental  details  are carefully reduced to  the essen- 
tials relevant to  the project phase at hand. A rea- 
sonable manager considering the adoption of sim- 
ulation technologies will  ask  how one can know if 

the abstractions were performed correctly. This 
topic is addressed in another section of this pa- 
per. We can’t argue that simulation should always 
be trusted.  There  are critical areas where it isn’t 
worth the risk. However, one must trade schedule 
compression against risk, and consider that sched- 
ule compression in one area leads to more time for 
analysis in another, which could improve the over- 
all project risk/cost position. And  finally, as advo- 
cated in detail elsewhere in this  paper, we believe 
it prudent  to do regular ground-truth  runs on the 
target hardware, just  to make sure  nothing slipped 
through. 

Adoption of new tool is  difficult. A simulator is a 
new tool to learn. If simulation is to  be success- 
ful, each developer must be competent in the opera- 
tion of the tool. Developers, especially the seasoned 
ones, won’t acquire this knowledge and skill with- 
out good reason: they’ve seen many a  tool come 
and go, and rightfully don’t want to invest effort 
into yet another dead end. To mitigate, the simula- 
tor should be designed to allow  low-cost buy-in - It 
must be available at  the right time, easy to install, 
and the payoff must be obvious to  the user that has 
knowledge  (which must be easily acquired!) of just 
a few basic commands. We also recommend that 
some  sim developers join the development virtual 
team, so expertise is  always at hand  and is clearly 
focused on the concerns of the developers. 

Simulation  must be introduced  early. There is a 
natural  time for the introduction of simulation into 
a  project,  and if simulators aren’t provided in  har- 
mony with that timing, the developers will do some- 
thing else.  Once that something else  is done”,  it 
introduces a project-wide habit that will not con- 
verge to a single roduct  and will probably last the 
life of the effort . 18 

Front-loading a schedule  hurts. For whatever rea- 
son, software development schedules and  budgets 
are almost always back-loaded. This makes it diffi- 
cult to fund front-loaded work  like the development 
of simulators and  other  productivity tools. Unfor- 
tunately, simulators must be developed early  and 
systematically (i.e. they front-load the schedule and 
budget) if they  are to provide their maximum pay- 
Off.  

“I’ve  got testbeds.” Virtually every project builds a 
few testbeds.  It’s reasonable for project manage- 
ment to ask  why it should sponsor simulators in 
addition to  the testbeds. By  now it must be clear 

~ 

llUsually either homegrown simulation or testbed-based devel- 
opment. It’s  not  that  the developers will do a bad job of these 
things:  They may do  exceptional work (In fact, several of the HSS 
principals were at one time  just such developers). The problem 
is that you don’t want n ad hoc simulator or environment devel- 
opment efforts within a project, because that’ll always cost more 
time  and money than one may anticipate,  and probably won’t be 
a managed line-item. 

lZWe have seen disaster-class events force first-principal re- 
engineering of development processes, which makes for open  minds 
and a natural second chance for introduction of simulation, but you 
can’t count on that happening. 
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that  there  are two general reasons for doing so: The 
marginal cost of simulator copies  is near zero, so 
you needn’t have developers sitting idle waiting for 
testbed  time;  and even if you  have many testbeds, 
the simulator provides a  better development en- 
vironment, which tightens schedule and schedule 
variance. These lead to significant productivity 
improvements and  thus schedule compression and 
cost reduction. Note that we DO NOT advocate 
simulation-only development. It isn’t yet realistic 
to expect anything  other than  the real hardware to 
provide the ground truth. However, a sim is  suffi- 
cient for many purposes, improves productivity, and 
much cheaper. 

Operations  verification 
The purpose of a spacecraft is to  return science data. 
Spacecraft cost amortized over  mission lifetime can easily 
be in the neighborhood of US$100K per day, so anything 
that reduces the quality or quantity of data, even  for a 
few minutes or by a few percent, is quite costly by this 
cost model. 
Spacecraft on the drawing boards  today will be rather 
robust in the face of potentially damaging command- 
ing: They  are being designed with onboard intelligence 
that will maintain the fundamental  health of the space- 
craft,  and continue to work on mission goals, even  in the 
face of commands that  attempt  to  to otherwise. This is 
good, and will help prevent disastrous consequences of 
erroneous commanding. However, the simple existence 
of the erroneous command implies that something went 
wrong in the operations process. That in turn means 
that somebody probably isn’t going to get the results 
they anti~ipated’~. 
But no matter how that erroneous command is handled 
by the spacecraft, science return has to be reduced: The 
craft will generates  a workaround, but  it is  unlikely that 
it’ll come up with the original intent of the  author of the 
command. 
A spacecraft emulator can be used to validate commands 
before they  are sent to  the real spacecraft, as outlined in 
a paper devoted to  this subject[8].  In  this way one can 
confirm that  the command causes the anticipated behav- 
ior without  impacting the spacecraft should something 
go wrong. 
Spacecraft are gaining in their ability to operate au- 
tonomously, which means that they  are increasingly re- 
sponsive to their environment. A  prudent risk manage- 
ment plan must ask how  “close” the spacecraft will  come, 
during  operations, to being unable to respond properly 
(this is another face to  the “lost science return” model 
of failure).  This question can in principle be  answered 
by using a spacecraft simulator to explore the behavior 
of the spacecraft over a number of perturbations of the 
“nominal” scenario while gleaning proximity to failure 
information from the software internals during the many 
scenarios. This  type of verification is  discussed in detail 
in a previous paper[9]. Another approach, based upon 

13Hopefully an informative error message and minimally reduced 
science return,  rather  than a “blue screen” spacecraft. 

analysis[lO], is  also possible. Each method has strengths 
and weaknesses, and  both will probably be necessary. 

A simulator is the best way to do do perturbation  test- 
ing, for several reasons: The test will probably require 
visibility into flight software internals  in order to infer 
the proximity to failure; and  it will probably take  a large 
number of executions to acquire sufficient information. 
The best way to do this is to  run many experiments in 
parallel, and  run each as fast as possible. 

End-to-end  test 
An end-to-end simulation is easily performed by operat- 
ing the simulated spacecraft as though  it were the real 
spacecraft: real operations tools and processes are used 
as  though  a real spacecraft were being operated. Only 
the low-level uplink and downlink interfaces at  the Deep 
Space Network (DSN) need special configuration. All 
other tools can be operated nominally.  Given  sufficiently 
clever  scene generators, even  science analysis tools could 
be exercised in this  manner. 

6 CASE STUDIES 

Galileo 
The Galileo  mission launched in 1989 to study  Jupiter. 
It consists of a large (5000 pound) spacecraft with ten 
instruments,  and  a  probe with an additional six instru- 
ments. In April of 1991 it suffered an onboard  hardware 
failure when the large high-gain antenna failed to deploy. 

The  antenna deployment failure necessitated switching 
the science data link to  the much  slower  low-gain an- 
tenna.  This, in turn, required a significant unscheduled 
upgrading of the flight software to use sophisticated data 
compression and  data management techniques in order 
to achieve the science objectives of the mission. 

Until the  antenna failure, software development was  for 
the most part performed on a single hardware  bread- 
board of the Galileo spacecraft. Development was  paced 
by this limited resource because there is only one,  and 
it is expensive to  operate  it.  The large software up- 
grade required to recover from the  antenna failure was 
well outside of what could be accomplished using the 
testbed-based methods used until that time. 

We developed[l]  a complete software simulation of the 
Galileo spacecraft, with fidelity sufficient that  the flight 
software binary code (exactly what’s uploaded into  the 
spacecraft RAM  for execution) would execute exactly as 
it would on the spacecraft and with performance about 
ten times faster than realtime. We also built models of 
the various sensors and  instruments with fidelity suffi- 
cient to maintain nominal readings so that  the software 
would not  enter  fault handling conditions. 

The simulators were  used as software development tar- 
gets, and for software testing. During some peak peri- 
ods, there were  over a dozen instances of the simulator 
executing tests in parallel, and  a staff of dozens of engi- 
neers using them as development and  test  targets.  The 



* software was tested on the hardware  testbed only after 
being developed and tested on the simulators. 

Simulation directly enabled a much larger scope of 
changes to  the flight software, and so a much greater 
recovery of science return  than could  have been possi- 
ble using only hardware  testbeds for  development and 
testing. 

Cassini 

Cassini is another large mission, launched in 1997 and 
destined for Saturn. 

In  this case, spacecraft simulation is  used primarily for 
purposes of verification and validation during operations: 
Commands that  are  to be sent to  the spacecraft are first 
sent to  the simulator, in order to confirm that  the com- 
mands behave as expected and  that there  are no  unex- 
pected resource other  other  interactions.  Certain critical 
commands are also confirmed on a  hardware  testbed,  but 
as with Galileo, this is expensive and time-consuming. 

The core simulation technology was the same as used 
for Galileo, but GUI interfaces and  operations concepts 
required significant modification to suit  this different  ap- 
plication of the tool. 

Voyager 

The voyager  mission consists of two spacecraft launched 
over twenty years ago (1997) and now outside of our so- 
lar  system.  A simulator had been built for  Voyager. The 
Simulator, called COMSIM, executes on a legacy main- 
frame that was scheduled for  decommissioning.  COM- 
SIM  was written  in a mix of various FORTRAN dialects 
and assembly language,  and was heavily dependent upon 
vendor-specific operating  system characteristics. 

The charter was to develop a replacement for  COMSIM 
that would execute on modern workstations, so that  the 
decommissioning could be performed on schedule with- 
out damaging Voyager operations.  Three approaches 
were at first considered: (1) port  it; (2) write an in- 
struction level simulation (ILS) of the legacy system or a 
binary translator[ll]; or ( 3 )  rewrite COMSIM using our 
newer simulator framework. Option ( 3 )  was selected, be- 
cause (1) appeared to be impractical  and (2) was  likely 
to result in excessive performance degradation. 

There were  two major challenges. First,  the COM- 
SIM source code reflects many discoveries made over the 
years about  the voyager hardware behavior as  parts de- 
graded  and failed, so we couldn’t derive specifications 
from requirements: we had to reverse-engineer the ex- 
isting product, which  was a lot of work. Second, COM- 
SIM generates large reports  that contain spacecraft and 
COMSIM data  and  are processed by various tools gener- 
ated over the years. Most of the tools operate directly on 
printer-image text files and depend upon spacing, page 
length, numeric formats and many other  syntactic de- 
tails, all of which had to be exactly duplicated so that 
the new simulator would operate within the existing pro- 
cesses and  tool chains. 

7 HISTORY OF BIT-LEVEL 
SIMULATION AT JPL 

Bit-level simulators have been in use at  JPL for  over 
thirty years. The first was part of the STARSYSTEM 
development environment that was created at JPL in the 
late 1960’s as part of a program to develop fault-tolerant 
computers for space flight applications. The simulator 
was  used to do design trades  and as a software develop- 
ment target, since only one breadboard of the JPL-STAR 
computer system was at first built. 
The STARSYSTEM, including the simulator, evolved 
into the development environment for the Viking space- 
craft.  A minimal simulation of the environment was 
added to  the simulator at this  time.  This  system was 
called VIKINGSYSTEM. The simulator was enhanced 
to support  other processors onboard the Viking space- 
craft,  and came to be called  COMSIM. 

COMSIM  was then modified  for the Voyager project,  and 
was recently replaced by the later  generation of simula- 
tors described in this  paper because its host platform 
is  being  decommissioned and  porting was  deemed more 
expensive than replacing it. 
Finally, the simulators discussed in this  paper  carry 
the  tradition of bit-level simulation to contemporary 
projects. 

8 VERIFICATION OF THE 
SIMULATOR 

A significant  issue that comes up when writing simula- 
tors is that of verification: How do you  know that  the 
simulator behaves identically to  the hardware that it’s 
supposed to be simulating? We’ve found several meth- 
ods useful, outlined in this section. 

1. Gold-standard  comparison It is sometimes the 
case that there is an existing breadboard.  A gold- 
standard  test is performed by extracting detailed 
traces of memory, bus, and i/o register activity from 
executions of the hardware. The same  tests  are  then 
executed on the simulator, and compared the traces. 
It is often necessary to deal with nondeterministic 
behavior of the hardware by extracting  subtraces 
and comparing them individually. We have done 
work on using dynamic slicing  for this purpose. 

2. Use the hardware verification suite Flight 
hardware is extensively verified, and much of the 
verification is done via software that executes upon 
as well as verifies the avionics. Those same tests  are 
used to validate the simulator. 

3. Verify  against the specification Sometimes 
there is  no hardware verification suite, so tests must 
be derived from the specifications. Spacecraft hard- 
ware  is generally well specified, so this is tedious but 
fairly reliable. It is usually fairly straightforward to 
write an extensive test  suite. 
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' It's interesting to note that most of the simulator verifi- 
cation  tasks  actually become more difficult if the models 
aren't full-fidelity. They won't match the flight hard- 
ware, so you can't do gold-standard testing;  and simi- 
larly  they'll fail most of the hardware acceptance tests. 
In each case it will take  a large amount of error-prone 
manual effort to explain all of the differences without 
missing any  errors  in the differences. If the models are 
full-fidelity, any difference  is bad and that's  that. 

9 SUMMARY 

Bit-level spacecraft simulation has been used  over the full 
spacecraft lifecycle  for decades at  JPL.  It has repeatedly 
been demonstrated to save  money and reduce schedules. 
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